

Apremilast – A review of Analytical Methods Developed for API with its impurities, Pharmaceutical Formulations and Biological Matrices

Nidhi Patel*, Sagarkumar Patel, Dr JasminaSurati, Dr Ashok Akbari, Dr Dhiren Shah

Department of Pharmaceutical Quality assurance, Shree Naranjibhai Lalbhai Patel College of Pharmacy, Umrakh, Gujarat – 394345.

Date Of Submission: 01-06-2021

Date Of Acceptance: 14-06-2021

ABSTRACT: An extensive survey of the Literaturepublished in various analytical and pharmaceutical chemistry-related journals have been conducted for apremilast in Bulk, Laboratory mixture. Pharmaceutical Dosage form and biological fluid. Apremilast is a flourishing molecule in the field of Dermatology, it is selective enzyme phosphodiesterase 4 (PDE4) inhibitor. Initially, Apremilast was approved by United State FDAin 2014. On OCTOBER, 2017, Drug Controller General of India(CDSCO) also approved Apremilast in India for marketing. Till date, no compendia method has been reported for Apremilast. Literature survey was done by screening the papers reporting analytical techniques of Apremilast from year 2014 to 2020. Various analytical methods have been reported for the estimation of apremilast they are UV, HPLC, LC/MS, HPTLC, FTIR, DSC, NMR, XRD, SEM in bulk with its impurities, laboratory mixture, pharmaceutical dosage form as well as biological fluid.

Keywords: Apremilast, Analytical Methods, impurities

I. INTRODUCTION: -

Psoriasis is a chronic inflammatory skin disease, affecting upto 1-3% of the adult population. It is immune-mediated inflammatory disease that may be associated with the defect in proliferation and difference of keratinocytes associated with cell infiltration particularly consisting T-lymphocytes, macrophages, and neutrophils⁽⁰⁾

APREMILAST, sold under the brand name OTEZLA, is an orally administered small molecule,selectiveinhibitor of type 4 cyclic nucleotide phosphodiesterase (PDE4). Initially,approved by UNITED STATE FDA on MARCH 21, 2014(Otezla, Celgene Corporation), to treat psoriatic arthritis (PsA) in adults. Soon, on SEPTEMBER 23, 2014, FDA approved apremilast for treating patients of moderate to severe plaque psoriasis who are candidates for phototherapy or systemic therapy ([2]). Apremilast has since been approved for use in one or both of these indications in multiple countries, including Canada and the European Union. Available in following Strength: -10 mg-20 mg-30 mg; 30 mg. On October 10, 2017, Drug Controller General of India(CDSCO) also approved Apremilast in India for marketing⁽²⁾. FDA On Julv 19,2019 approved OTEZLA(APREMILAST) for the treatment of adult patients with oral ulcers associated with Bechet's Disease ([2])- is a systemic vasculitis, characterized by recurrent attacks of acute inflammation^{([}4]⁾.

APREMILAST has shown promising result in treating patients with psoriasis and a few other dermatologic disorders^(15]). Off label indication of APREMILAST are atopic dermatitis, alopecia areata, hidradenitis suppurativa, other variants of psoriasis, cutaneous sarcoidosis, and discoid lupus.

Due to its safety profile and its immunomodulatory effect on multiple cell. Case study reported from RCT data Alopecia areata,Atopic dermatitis,Hidradenitis suppurativa,Nail and scalp psoriasis,Palmoplantar psoriasis. From open label study case study reported wereCutaneous sarcoidosis,Discoid lupus erythematosus,Lichen planus, Rosacea, showing positive and negative result. Various case series and case reported pityriasis rubra pilaris, Hailey-Hailey disease, vitiligo, and generalized pustular psoriasis⁽⁶⁾.

Patents on analytical method of apremilast: CN107305198 - Method For Separating And Determining Apremilast And Related Substances Through High-Performance Liquid Chromatography– patent is applicable to five process related impurities of apremilast, which can be separated and detected more accurately and effectively(Application Number:

201610242289.7)^{([7]]}.CN105628841 - Method For Separating And Measuring Apremilast And Enantiomer Of Apremilast Through Liquid Chromatography- patent for separation of enantiomer of apremilast(Application Number: 201510997147.7)^([8]).

Table 1: Physiochemical	properties of Apremilast ^([10],[11])	
~ 1		

PROPERTIES	DETAILS
Product Name	APREMILAST
Cas No	608141-41-9
Structure	H_{3C} H_{3C} H_{3C} H_{3C}
Chemical formula	$C_{22}H_{24}N_2O_7S$
Iupac Name	N-[2-[(1S)-1-(3ethoxy-4- methoxyphenyl)-2- methylsulfonylethyl]-
Mologular mass	460 501 g/mol
Characteristics	400.501 g/moi
Characteristics	a white to pale yellow nonnygroscopic powder
Solubility	Insoluble in water, slightly soluble in ethanol, and soluble in acetone
Melting point	156.1°C
Boiling point	741.3±60.0°C
РКа	12.58
logP	1.86/1.31
logS	4.1

PHARMACOLOGY: -

Phosphodiesterase (PDE) is a group of enzymes. Till now, eleven different families of PDE enzymes have been identified, PDE-4 enzyme has been found to play important role in inflammatory diseases, because of its liberal expression in the vascular endothelium, smooth muscles, immunologic cells, and keratinocytes.

Apremilast is a small molecule, a specific PDE-4 inhibitor, works intracellularly to modulate a network of pro-inflammatory and antiinflammatory mediators. Acts by directly targeting a central pathogenic mechanism, binds directly to the PDE-4 enzyme and bypassing complex antigenreceptor interactive immunoregulatory mechanisms. Once drug-enzyme binding occurs, a series of events follow, foremost increasing levels of cAMP, which in turn decrease the levels of proinflammatory cytokines such as tumor necrosis factor (TNF)- α , interleukin (IL)-23, IL-12, and leukotriene B4, and also increases the levels of anti-inflammatory cytokines such as IL-10.

In addition, apremilast also binds to tolllike receptor 4 on peripheral blood mononuclear cells, further reducing the production of proinflammatory cytokines. Apremilast also reduces the activity of nitric oxide synthase, an enzyme responsible for the synthesis of nitric oxide, which is an important pro-inflammatory mediator, thus preventing the transport of macrophages and

myeloid dendritic cells to the dermis and epidermis in psoriasis-skin.In this way, apremilast plays a notable anti-inflammatory role.^([5],[8]).

Table 2: Pharmacokinetic parameters of apremilast ^([10],[11])

AbsorptionAfter oral administration, apremilast is absorbed with an absolute bioavailability of 73%, withthe maximumplasma concentrations (Cmax) occurring at a mean time (tmax) of 2.5 hoursHalf life5–7 hoursDistributionMean apparent volume of distribution (Vd) is 87 L, suggesting that apremilast is distributed in the extravascular compartmentProtein BindingThe plasma protein binding of apremilast is about 68%MetabolismApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationOnly 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		Table 2. That made oknowle parameters of apreninast [10] [11]
73%, withthe maximumplasma concentrations (Cmax) occurring at a mean time (tmax) of 2.5 hoursHalf life5–7 hoursDistributionMean apparent volume of distribution (Vd) is 87 L, suggesting that apremilast is distributed in the extravascular compartmentProtein BindingThe plasma protein binding of apremilast is about 68%MetabolismApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationOnly 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour	Absorption	After oral administration, apremilast is absorbed with an absolute bioavailability of
Half life57 hoursDistributionMean apparent volume of distribution (Vd) is 87 L, suggesting that apremilast is distributed in the extravascular compartmentProtein BindingThe plasma protein binding of apremilast is about 68%MetabolismApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationOnly 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		73%, with the maximum plasma concentrations (Cmax) occurring at a mean time
Half life5–7 hoursDistributionMean apparent volume of distribution (Vd) is 87 L, suggesting that apremilast is distributed in the extravascular compartmentProteinThe plasma protein binding of apremilast is about 68%BindingApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Unly 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		(tmax) of 2.5 hours
DistributionMean apparent volume of distribution (Vd) is 87 L, suggesting that apremilast is distributed in the extravascular compartmentProteinThe plasma protein binding of apremilast is about 68%BindingApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationOnly 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour	Half life	5–7 hours
distributed in the extravascular compartmentProtein BindingThe plasma protein binding of apremilast is about 68%MetabolismApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour	Distribution	Mean apparent volume of distribution (Vd) is 87 L, suggesting that apremilast is
Protein BindingThe plasma protein binding of apremilast is about 68%BindingApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		distributed in the extravascular compartment
BindingApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour	Protein	The plasma protein binding of apremilast is about 68%
MetabolismApremilast is heavily metabolized by various pathways, which include oxidation, hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour	Binding	
hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced from its metabolism. Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour	Metabolism	Apremilast is heavily metabolized by various pathways, which include oxidation,
from its metabolism.Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof of unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		hydrolysis, in addition to conjugation. Approximately 23 metabolites are produced
Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		from its metabolism.
subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		Apremilast is metabolized by both cytochrome (CYP) oxidative metabolism with
metabolism of apremilast is primarily mediated by CYP3A4, with minor contributions from CYP1A2 and CYP2A6.Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		subsequent glucuronidation and non-CYP mediated hydrolysis. In vitro, CYP
contributions from CYP1A2 and CYP2A6. Route of elimination Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption. Elimination The average elimination half-life of this drug ranges from 6-9 hours Half Life The plasma clearance of apremilast is about 10 L/hour		metabolism of apremilast is primarily mediated by CYP3A4, with minor
Route eliminationof Only 3% and 7% of an apremilast dose are detected in the urine and faces as unchanged drug, respectively, indicating extensive metabolism and high absorption.Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		contributions from CYP1A2 and CYP2A6.
elimination unchanged drug, respectively, indicating extensive metabolism and high absorption. Elimination The average elimination half-life of this drug ranges from 6-9 hours Half Life Clearance The plasma clearance of apremilast is about 10 L/hour	Route of	Only 3% and 7% of an apremilast dose are detected in the urine and faces as
absorption. Elimination Half Life Clearance The plasma clearance of apremilast is about 10 L/hour	elimination	unchanged drug, respectively, indicating extensive metabolism and high
Elimination Half LifeThe average elimination half-life of this drug ranges from 6-9 hoursClearanceThe plasma clearance of apremilast is about 10 L/hour		absorption.
Half Life Clearance The plasma clearance of apremilast is about 10 L/hour	Elimination	The average elimination half-life of this drug ranges from 6-9 hours
Clearance The plasma clearance of apremilast is about 10 L/hour	Half Life	
	Clearance	The plasma clearance of apremilast is about 10 L/hour

ADVERSE EFFECTS:

Most common medical condition encountered with apremilast are diarrhoea, nausea, and headache. Other adverse effects include upper respiratory vomiting, tract infection, nasopharyngitis, upper abdominal pain, hypersensitivity, dyspnea, cough, and skin rash. As it has mild to moderate intensity of adverse effects,

apremilast is safe drug with favourable toxicity profile ${}^{([5])}$.

DRUG INTERACTION:

No drug interaction was observed when administered with CYP3A4 inhibitor, CYP3A4 substrate.Drug Interaction was observed when administered with Strong CYP3A4 Inducer

phenobarbital, carbamazepine, (rifampin, phenytoin), potent immunosuppressive drugs (e.g., cyclosporine, tacrolimus) and **Biological** Therapeutics(TNF antagonists and anti-IL-12/23 antibodies). p40 Apremilast cannot he simultaneously administered with strong CYP3A4 inducer, as it reduces level of apremilast in $body^{(5,11)}$.

TOXICITY:

Acute and Repeat dose toxicity studies were carried out on mice and rats.

Acute toxicity

In mice, the lowest lethal oral dose was > 2000 mg/kg, and the lowest lethal intravenous (IV) doses were 120 mg/kg and > 120 mg/kg for males and females, respectively. In rats, the lowest lethal IV dose was > 60 mg/kg and < 75 mg/kg, and the lowest lethal oral doses were 2000 mg/kg and > 300 mg/kg for males and females, respectively. Repeat dose toxicity

studies of up to 6 months duration in mice (dose levels of 10, 100 and 1000 mg/kg/day; equivalent to 0.8-, 3.7- and 10-fold clinical exposure based on AUC), 12 months duration in monkeys (dose levels of 60, 180 and 600 mg/kg/day; equivalent to 2.3-, 3.2- and 4.8-fold clinical exposure based on AUC) and 90 days duration in rats.

From acute toxicity and repeat dose toxicity studies, apremilast was found safe for human $use^{([11])}$.

ANALYTICAL METHODS:

The main purpose of analytical method development and validation is to prove that the proposed analytical method is accurate, specific, precise, and robust for the particular drug^{([}13]⁾.

Analytical Method Validation Parameters as per USP and ICH are as follow:

- 1.Specificity
- 2.Linearity
- 3.Precision
- 4.Accuracy
- 5.Range
- 6.Limit of Detection
- 7.Limit of Quantification
- 8.Robustness

9. System Suitability Test 10. Ruggedness

Literature survey reveals that various analytical method have been developed to estimate apremilast in bulk form, pharmaceutical dosage form as well as in biological sample. The method includes UV spectroscopy, HPLC, stability indicating HPLC, LC/MS(HPLC/MS, UPLC/MS), HPTLC, FTIR, DSC, NMR, X-RAY and SEM.

UV SPECTROSCOPY: -

ULTRAVIOLET(UV) spectroscopy is a physical technique of the optical spectroscopy that uses light in the visible, ultraviolet, and near infrared ranges.

Beer-Lambert Law is the principle behind absorbance spectroscopy.

BEER- LAMBERT LAW states that the absorbance of a solution is directly proportional to the concentration of the absorbing species in the solution and path length $([14])^{1}$.

A = abc

Where, A = Absorbance,

- a = absorptivity,
- b = path length,
- c = concentration.

Various UV METHODS were used for analysis of APREMILASTi.e., Absorbance maxima method, Derivative method(zero order, first order) and area under curve method. Methanol was used as solvent in most of the reported article followed by acetonitrile. Detection wavelength for apremilast was selected 230nm except in few cases wavelength where detection selected was 340nm^{([}15]⁾,220nm^{([}21]⁾229.3^{([}20]⁾.Linearity was studied and Correlation coefficient was found in the range between 0.9959 to 0.9999.

Few Stability indicating UV spectrophotometric analytical method were reported where Apremilast was subjected to alkali, acid, oxidation, photolytic, UV light degradation. Result showed that Apremilast is unstable in alkaline and acidic condition whereas stable in thermal and UV light irradiation^([20]).

Table 3: U	V	Method	Determinati	on	of Aj	premilast

Sr. No	Title	Method	Description	Ref. No
1	Method Development of Apremilast (API) in	UV	λmax : 340nm Linearity :	[15]

	Methanol by UV-Visible		10-60 μg /mL	
	Spectroscopy		Solvent: Methanol	
2.	DevelopmentAndValidationOfSophisticatedAnalyticalMethodForThe	Double beam UV 1700 Pharmaspec (Shimadzu, Japan)	λmax: 230nm Linearity: 4-12 μg/mL Solvent: methanol	[16]
	Estimation Of Apremilast	METHOD A (ZERO ORDER)	METHOD A: λmax:230 nm	
		ORDER DERIVATIVE SPECTROSCOPY)	METHOD B: λ max: 224.0 nm. METHOD C:	
		METHOD C (AREA UNDER	λmax: 235-225 nm	
		CURVE)		
3.	DevelopmentAndValidationOfUvspectrophotometricMethodForTheEstimationOfApremilastInBulkAbsorbanceMaximaMethod	Jasco double beam UV-visible spectrophotometer, Model: V-630,)	λmax : 230 nm Linearity: 1-7 μg/ml Solvent: Methanol	[17]
4.	Studies On Derivative Spectroscopy And Area Under Curve UV-Spectrophotometric Methods ForEstimation Of Apremilast In Bulk And In-House Tablets	Double beam UV-VIS Spectrophotometer (UV-2450, Shimadzu, Japan) software UV Probe 2.21) METHOD A (ZERO ORDER	linearity: 2 -12 μg/mL Solvent: methanol Accuracy: 98-101 % Method A: λmax:230nm Method B: λmax:226.20 - 233.20 nm	[18]
		SPECTROPHOTOME TRY)	Method C: λmax:233.50 nm	
		METHOD B (ZERO ORDER SPECTROPHOTOME TRY – AUC)	Method D: - λ max: 233 - 234.60 nm	
		METHOD C (FIRST ORDER SPECTROPHOTOME TRY)		
		METHOD D (FIRST ORDER SPECTROPHOTMET RY – AUC)		
5.	DevelopmentandValidationofSpectrophotometricand	UV VIS Spectrophotometer (Shimadzu UV-1800)	λmax: 230nmlinearity: 2-10 μg/mLsolvent:Methanol	[19]

	Chromatographic Method		Water	
	for The Estimation of	Zero Order	W diel	
	Apremilast In Bulk And	spectrophotometric		
	Formulations	method		
6	Development and	FLICO Double beam	Amax • 229 3 nm	[20]
0	Validation of Stability-	SL 210 Ultra violet -	linearity: 2 -10 µg /mL	[20]
	Indicating IIV	Visible	solvent: Acetonitrile	
	Spectrophotometric	spectrophotometer	solvent. Acctointine	
	Method for Determination	spectrophotometer	STRESS CONDITION	
	Of Apremilast In Bulk		Unstable in Acidic	
	And Pharmaceutical		Hydrolysis (20.1%) and	
	Dosage Form		Alkaline Hydrolysis	
	Dosugeronni		(28.5%),	
			Oxidative degradation	
			(14.3%)	
			Photolytic degradation	
			(15.75%)	
			Stable in U.V degradation	
			(4.3%) and	
			Thermal degradation	
			(2.5%)	
7.	Method Development And	UV – Visible	λmax: 220nm	[21]
	Validation Of Forced	spectrophotometer	Linearity: 20-100 µg/ml	
	Degradation Studies Of	(Shimadzu Model	Solvent: methanol	
	Apremilast By Using UV	1700)		
	Spectrophotometric		STRESS CONDITION: -	
	Method		Acidic (8.2%)	
			Alkaline (13.3%)	
			Photolytic (12.5%)	
			Thermal (14.5%)	
			Oxidative (10.7%)	

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY(HPLC):

HPLC is the most accurate analytical technique, has the ability to separate, identify and quantify sample dissolved in liquid. It is widely used in analysis of drug $product(^{l}22]$).

HPLC method comprises of two mode: NORMAL PHASE HPLC, REVERSE PHASE HPLC

Common Mobile phase solvent used were acetonitrile and water followed by less common solvent used acetic acid, potassium dihydrogen phosphate. In one reported case, Buffer: Methanol was used as mobile phase where buffer was made up of 0.1% orthophosphoric acid in water adjusted pH 2.8 with potassium hydroxide. Column used were various C18 COLUMN (Cosmosil, wondersil, PrincetonSPHERE Ultima, Grace, intersil, eclipse) except in few reported articles where column used were C8 and Max-RP 80 A. Most common detector used was PDA (photodiode array) except in some cases where UV detector was used. Detection wavelength in most of the cases reported was selected 230 nm except in few cases were wavelength selected was 203nm^([27]), 229nm^([31]), 231nm^([25]-[26]),360nm^([29]) respectively. Linearity was studied and correlation coefficient was found between the range 0.9981 to 0.9999. HPLC method are divided into: ISOCRATIC system and GRADIENT system.

In 2018, HPLC for determination of enantiomeric purity of apremilast was reported where 6 different chiral columns (Chiralpak AD, Chiralpak IA, Chiralpak AS, Lux Amylose-2, Chiralcel OD and Chiralcel OJ-H) were investigated, best result were obtained on Chiralpak IA column with CAN (acetonitrile). 0.1% Renantiomer as chiral impurity in S-APR as well as quantification of the S-enantiomer were determined^([24]).

Various Stability indicating RP – HPLC was performed, process related impurities of apremilast were identified, synthesized, characterized and

quantify. Structure is elucidated with NMR, FTIR

and MS techniques^([23],[32],[33]).

Sr	Title	Method	Description	Ref
no			Description	no
1	Development	ны с	Column: Cosmosil C19	r101
1.	Development		(4 fmm v 250mm Dorticle	[19]
		(ISOCRATIC)	(4.011111 X 23011111, Particle	
	01 Speatrophotome		Detectory UV Visible	
	spectrophotome			
	character and		spectrophotometer	
	Chromatographi		Amax: 230nm	
	c Method for the		Nobile phase- Methanol:	
	Estimation of		water (80:20v/v) pH3	
	Apremilast in		Flow rate 0.8 ml/min	
	Bulk and		Sample volume: 20 µL	
	Formulations		Retention time: 4.0 min	
	X1		Linearity: 10-50 µg/mL	
2	Identification,	Agilent 1100 HPLC	Column: Wondersil	[23]
	Characterization	system (Agilent	$C18(250 \text{ mm} \times 4.6 \text{ mm}, 5 \mu \text{ m})$	
	And HPLC	Technologies, USA)	Detector: PDA	
	Quantification	(GRADIENT)	λ max: 230nm	
	For Impurities		Mobile phase(A):0.03%	
	Of Apremilast		TFA	
			Mobile phase(B):ACN	
			(0.03% TFA)	
			Flow Rate: 1.0min/ml	
			Sample volume:20µL	
			Linearity: 0.03µg/ml -	
			0.63µg/ml	
3	Validated LC	Agilent 1260 Infinity	Column: Chiralpak IA	[24]
	Method	HPLC system	Detector: UV detector	
	For Determinati		λmax: 230nm	
	on		mobile phase: MeOH and	
	Of Enantiomeric		ACN	
	Purity		flow rate: 0.7 mL min-1	
	Of Apremilast		sample volume: 10 µL	
	Using		retention time:	
	Polysaccharide-		R-APR (quantification as	
	Type Stationary		impurity) : -	
	Phases In Polar		linearity: 2–100 µg mL–1	
	Organic Mode			
			S-APR (assay): -	
<u> </u>			linearity: 12–200 µg mL–1	
4	Design Of	KP-HPLC	Column: PrincetonSPHERE	[25]
	Experiment	(ISOCRATIC)	Ultima (250 mm \times 4.6 mm \times	
	Avenue For		5 μm) C18 column	
	Development	UFLC HPLC system	Detector: PDA (photodiode	
	And Validation	(Shimadzu	array)	
	Of RP-	Corporation, Japan)	λmax: 231nm	
	HPLCPDA		Mobile Phase -	
	Method For		methanol:water (pH 3.50)	
	Determination		70:30% v/v	
	Of Apremilast		Flow rate: 1ml/min	

 Table 4: HPLC Method Determination of Apremilast

	In Bulk And In		Sample volume:20 µl	
	In-House Tablet		Retention time: 5.15	
	Formulation		Linearity: 2–12 µg/ml	
5	Chromatographi	RP- HPLC	Column: Grace C 18	[26]
-	c Method	(ISOCRATIC)	analytical column	[=0]
	Development	(10 0 0101110)	λ max: 231nm	
	And Validation		Mobile Phase Methanol	
	$\Omega f \Lambda scar \Omega f$		Water (80.20)	
	Apromilast In		Flow rote: 0.20	
	Aprenniast In		Flow rate: 0.8mi/min	
	Bulk And Tablet		Sample volume: 20µL	
	Dosage Form		Retention time: 4.80 mins	
			Linearity : 10-50µg/ml	
6	A New Stability	RP-HPLC	Column:Intersil ODS3 C18	[27]
	Indicating Rp-	(ISOCRATIC)	column (250 mm \times 4.6 mm	
	Hplc Method	Shimadzu Model	i.d., 5 µm particle size)	
	For The	CBM-20A/20 Alite	Dectector: photodiode array	
	Determination	HPLC system	λmax: 203nm	
	Of Apremilast-		Mobile Phase: 0.1% acetic	
	Δn		acid and acetonitrile	
	Antirhoumatic		(20.80% y/y)	
	Drug		$(20.0070, \sqrt{7})$	
	Drug		Flow rate: 0.8mi/min	
			Sample volume: 20 µL	
			Retention time: 5.30 ± 0.02	
			mins	
			Linearity:0.5–150 µg/ml	
			Stress Condition:	
			Acidic (7.51)	
			Alkaline (11.72)	
			Oxidative (8.82)	
			Thermal (0.02)	
7	Devenued Dhogo		Columnain artail C2 (250 X	r 2 01
/	Keversed Phase		Column: mertsii C8 (250 \times	[28]
	High		4.6 mm) 5µ	
	Performance		Detector: diode array	
	Liquid		λmax: 230nm	
	Chromatograph		Mobile Phase	
	y Method For		buffer and methanol (47:53	
	Determination		% v/v)	
	Of Assay And		Flow rate: 1.5 ml /min	
	Forced		Sample volume:20 µ1	
	Degradation		Retention time: 8.3 minutes	
	Study Of			
	Apremilast		Stress Condition	
	From Active		Acid (4.6%)	
	Pharmaceutical		Base (14.9%	
	Dosage Form		Degradation was not	
	Dosage Porm		observed in Ovidativa	
			Thermal and	
			Thermal, and	
			Photolysis degradation	
8	Validation of	Shimadzu HPLC	Column: Analytical	[29]
	Stability	system with UV	Technologies Limited C18	
	Indicating	Detector	column (250 mm x	
	Method and		4.mm,5µm)	

	Degradation Kinetic Study of Apremilast		Detector: UV Detector λmax: 360nm Mobile Phase: potassium dihydrogen orthophosphate: Acetonitrile (40:60) Flow rate: 1 mL /min Sample volume: 20μl Run time: 10 min Linearity: 50-400µg/mL STRESS CONDITION: acidic condition (21%), alkaline condition (6.5%), oxidative condition (25.7%), photolysis degradation (3.9)	
9	Development And Validation Of Stability Indicating Rp- Hplc Method For The Estimation Of Apremilast By Forced Degradation Studies	RP-HPLC Jasco HPLC system consisting of a binary gradient system (Model no.: HPLC 3000 Series)	Column:GraceC18(250mm x 4.6ID, 5 μ m)Detector:UV-3000-Mdetector λ max: 230nmMobilePhase:methanol:water (70:30, v/v)Flow rate:0.8 ml/minSample volume:20 μ lRetentiontime:5.203minutesLinearity: 10-50 μ g/mlLOD:0.5329 μ g/mlLOQ:1.615 μ g/mlStress condition:Apremilast was considerablystable in acidic, photolyticand thermal as degradantswere not seenIn alkaline and oxidativecondition, degradation wasseen.	[30]
10	Development and Validation of a Stability- Indicating Reversed Phase Hplc Method for Determination of Apremilast in Bulk and Pharmaceutical Dosage Form	RP-HPLC (GRADIENT) Agilent technologies 1260 infinity system	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	[31]

			Alkalina $(65, 17\%)$	
			Alkalifie (03.17%)	
			Oxidative (9.01%)	
			Thermal (18.86%)	
			UV light (62.20%)	
11	Stability-	Shimadzu HPLC	Column: Cosmosil C-18	[32]
	Indicating	system LC-2010 CHT	column 250 mm x 4.6 mm,	
	Related		5.0 μm	
	Substances		Detector: photodiode array	
	Method Of		λmax: 230nm	
	Apremilast By		Mobile Phase	
	Hplc And		Mobile Phase-A: Buffer-1:	
	Synthesis And		Methanol (90:10) v/v	
	Chracterization		MobilePhase-B: Buffer-1:	
	Of Related		Acetonitrile (10:90) v/v	
	Impurities Using		Flow rate: 1.0 mL/min	
	Mass And Nmr		Sample volume:15 µL	
	Spectroscopy			
12	Development	RP-HPLC	Column:Synergi Max-RP	[33]
	and Validation	GRADIENT	80 A (150 \times 4.6 mm ID), 4 μ	
	of Stability	METHOD	Detector: Photodiode array	
	Indicating Rapid	(Agilent 1200, Agilent	Flow rate: 1.0 mL·min-1	
	RP-LC Method	Technologies,	Sample volume:10 µ1	
	for	Germany)		
	Determination		Stress condition:	
	of Process and		Acid hydrolysis (6.75),	
	Degradation		Base hydrolysis (8.47),	
	Related		Photolytic (0.32)	
	Impurities of		• • •	
	Apremilast, an			
	Anti-			
	Inflammatory			
	Drug			

Liquid Chromatography/ Mass Spectrsoscopy(LC/MS):

LC/MS is an hyphenated analytical technique that combines the physical separation abilities of liquid chromatography with the mass analysis capabilities of mass spectrometry([[]34]).LC/MS is a powerful technique with high sensitivity and high selectivity.

Plasma analysis(beagle dog plasma, rabbit plasma, rat plasma) was done using LC/MS

technique (HPLC/MS, UPLC/MS). Reconstituted Plasma was injected in HPLC SYSTEM. Electron Spray Ionization(ESI) was used for detection in all the cases.

All the reported article were successfully employed in pharmacokinetic study after oral administration of 10 mg(beagle dog)^([35]), 1.5mg/1.9kg(male rabbits)^([36]), 2mg/kg(rats)^([37]), 6mg/kg(rats)^([38]) of apremilast.

Sr	Title	Method	Description	Ref
no				no
1	A rapid and	LC/MS	Column:XTerra® MS C8 column (5	[35]
	sensitive High-	(GRADIENT)	mm, 2.1 3 150 mm, Waters)	
	Performance	Shimadzu SCL-10A	Mobile phase: methanol and 0.1%	
	Liquid	HPLC system	formic acid	
	Chromatography-	(Shimadzu, Japan)	Flow rate: 0.4 mL/min	
	tandem Mass	coupled to an API	Linearity: 5–1,000 ng/mL	
	Spectrometry	3000 mass		

 Table 5: LC/MS Method Determination for Apremilast

	method for determining apremilast in beagle dog plasma and urine: Application in a pharmacokinetic study	spectrometer (Sciex, Framingham, MA, USA)	m/z apremilast: 461.3→178.2 m/z IS (clopidogrel): 322.2→184	
2	LC-MS/MS Determination and Pharmacokinetics Study of Apremilast after Oral Administration in Rabbits	QSight® Triple Quad UPLC-ESI-MS/MS system (Perkin Elmer) Combined with QSight LX50 UHPLC	Column: CORTECS C18, 2.7 μm, 4.6 mm X 150 mm Mobile phase: Ammonium Acetate buffer pH of 4.0 with Methanol: Acetonitrile, (20:40:40%, v/v/v) Flow rate: 0.5 m.L/min Sample volume: 10 μ.L Linearity: 0.03 to 48.00 n.g/m.L	[36]
3	Determination of apremilast in rat plasma by UPLC–MS/MS in ESI-negative mode to avoid adduct ions formation	ISOCRATIC METHOD Acquity UPLC system	Column: Acquity BEHTM C18 column (100 × 2.1 mm, 1.7 μ m) Moblie phase: acetonitrile: 10 mM ammonium acetate (85: 15, v/v) Flow rate: 0.3 ml/min Linearity: 3.04 and 1000 ng/ml Ionization technique:ESI negative mode m/z 459.14 \rightarrow 78.95 for APM and m/z 380.04 \rightarrow 316.09 for IS(celecoxib) Cone voltage: - Apm: 42V Is: 54V Collision energy: - Apm: 22eV Is: 19eV	[37]
4	Determination of Apremilast in Rat Plasma by UPLC–MS-MS and Its Application to a Pharmacokinetic Study	Gradient method Acquity UPLC unit (Waters Corp., Milford, MA, USA)	Column: n Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 µm particle size) Detector: Flow rate: 0.40 mL/min Linearity: 0.1–100 ng/mL XEVO TQD triple quadruple mass spectrometer Ionization technique: electro-spray ionization (ESI) source Detection: triple quadrupole tandem mass spectrometer in the multiple reaction-monitoring mode m/z: 461.3 \rightarrow 257.1(APR) m/z: 237.2 \rightarrow 194.2 carbamazepine (internal standard)	[38]

HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY(HPTLC):

HPTLC(High Performance Thin Layer Chromatography) is an advance form of Thin Layer

Chromatography. HPTLC emerged as important tool in DRUG ANALYSIS^([39]).

DOE was based on Box Behnken design and Failure mode effect analysis.

Application of Box behken design was used to evaluate robustness. Factors like development distance, saturation time, activation time and mobile phase ratio have effect on a peak area and retention factor^([40]).

Failure mode effect analysis was performed for development of stability indicating assay method

for estimation of a remilast through quality by design approach ([42]).

HPTLC system used were CAMAG TLC SYSTEM(Muttenz, Switzerland). Aluminium backed precoated silica gel was used as stationary phase. Mobile phase used were different for reported article Toluene:Methanol^([40]), Toluene:Ethyl Acetate^([42]) were used. Linearity was studied and regression factor was between 0.996- 0.998.

SR.	Title		Description	Ref
no				no
1.	Application of Box-Behnken Design for Validation of High- Performance Thin-Layer Chromatography/Densitometry Method for Robustness Determination of Apremilast in Bulk and inhouse Tablets	HPTLC system: Camag TLC system (Muttenz, Switzerland)	Stationary phase: Aluminium backed precoated silica gel 60- F254 (20 x 10 cm)Mobile phase -Toluene: Methanol (8:2 v/v)Detection: Densitometry scanning mode: Absorbance- ReflectanceRf:64 ± 0.05 λmax: 230 nm	[40]
2.	A Stability Indicating HPTLC Method For Apremilast And Identification Of Degradation Products Using MS/MS	HPTLC System: Camag TLC system (Muttenz, Switzerland)	Stationary phase: Aluminium plates precoated with silica gel 60 F254 plates Mobile phase: Toluene: Ethyl Acetate (4:6; v/v) Densitometry of scanning mod: Absorbance– Reflectance λ max: 236nm Rf: 0.55±0.02 Linearity: 100 - 600ng Degradation was found maximum in Acidic condition (19.38%), minimum in oxidative condition (5.15%) and stable in photolytic condition	[41]
3.	Doe Based Failure Mode Effect Analysis (FMEA) To Development Of Stability Indicating HPTLC Method For Estimation Of Apremilast	HPTLC system (Camag Switzerland)	Stationary phase: aluminium backed pre-coated with silica gel 60F254 Mobile Phase: toluene: methanol: ethyl acetate (7:2:1% v/v/v) λ max: 241 nm Rf: 0.63±0.02 Linearity: 200-1000 ng/band From Degradation Studies apremilast was found to be	[42]

Table 6: HPTLC Method Determination for Apremilast

m h	more prone to alkaline hydrolysis (10.45%)but less
pi	prone to acid (23.90%)and
ne fo	found stable in oxidative dry
	heat and photolytic stress conditions
P	Photolytic degradation (9.56%)

Fourier-transform infrared spectroscopy (FTIR):

FTIR is a rapid and non-destructive multicomponent analysis^([39]).KBr pellet method

was used in sample preparation except in one article were ATR crystal (Attenuated total reflection method)^{([44]}.Characteristic peak was observed.

Sr	Title		Description	Ref
no				no
1	Identification, characterization and HPLC quantification for impurities of Apremilast	Thermo Scientific Nicolet iS5 FT-IR spectroscopy	Sample preparation: KBr pellets Peak: acylamino N-H stretching: 3363.3cm-1 methylene C-H: 2837 cm-1 isoindole C=O: 1764 cm-1 benzene ring: 3002 cm-1 sulphone -SO2: 1338 cm-1	[23]
2	Preparation of sustained release apremilast-loaded PLGA nanoparticles: in vitro characterization and in vivo pharmacokinetic study in rats	ALPHA-FTIR Spectrometer (OPTIK, Billerica, MA, USA)	Sample preparation: potassium bromide (KBr) pellets and by applying suitable pressure Peak: amide -C=O: 1,682 cm-1 ketone (-C=O): 1,764 cm-1 amide (-N-H): 3,363 cm-1	[43]
3	EnhancementOfSolubilityAndDissolutionRateOfApremilastByRecrystallizationTechnique	FTIR spectrometer (Bruker, Germany)	Sample preparation: ATR crystal (Attenuated Total Reflection method) Range: 4000-500 cm-1	[44]
4	Development and Validation of Stability Indicating Rapid RP-LC Method for Determination of Process and Degradation Related Impurities of Apremilast, an Anti-Inflammatory Drug	Perkin Elmer model-spectrum- 100 (California, USA)	Samplepreparation: KBr pellet method	[33]
5	Formulation, optimization and in vitro evaluation of nanostructured lipid carriers for topical delivery of apremilast	IR Prestige-21, Shimadzu Corp., Tokyo, Japan	Sample preparation: potassium bromide disc method Peak: N–H stretching: 3364 cm-1 Characteristic peak: amide carbonyl (C=O): 1764 cm-	[45]

			D	c	
Table 7:	FTIR	Method	Determination	tor <i>I</i>	Apremilast

			1 aliphatic benzene ring C–H stretching: 2837 cm-1 aromatic benzene ring C–H	
			stretching: 3003 cm-1 amide N–H bending: 1519 cm-1	
			C-O stretching:1233 cm-1	
6	A Novel Apremilast Nail	Cary 660, Agilent	Peak:	[46]
	Lacquer Formulation for	Technologies	amide –C=O: 1687 cm–1	
	the Treatment of Nail	Santa Clara, CA	ketone –C=O: 1763 cm-1	
	Psoriasis		amide –N–H: 3362 cm–1	

Differential Scanning Calorimetry (DSC):

Differential Scanning Calorimetry (DSC) is athermo-analytical technique which measures the rate of heat flow to a sample and to a standard that are at the same temperature $(^{46})$. DSC studies were performed comparing pure apremilast and various apremilast formulation as well as from solubility studies. Endothermic peak of pure apremilast obtained from the articles reported was between 152°Cto 166°C.

Sr.n	Title		Description	Ref
0				no
1.	Solubility and thermodynamics of apremilast in different mono solvents: Determination, correlation and molecular interactions	DSC-60 Instrument (Shimadzu, Japan)	Heating rate:283.2 K min-1 Nitrogen flow rate: 40 mL min-1 Endothermic peak:432.02 K	[48]
2	EnhancementOfSolubilityAndDissolutionRateOfApremilastByRecrystallizationTechnique	DSC–60 Differential Scanning Calorimeter (Shimadzu, Japan)	Heating rate:4°C/min Nitrogen flow rate: 50 mL/min Endothermic peak:155.62 °C	[44]
3	PreparationOfSustainedReleaseApremilast-LoadedPLGANanoparticles:InVitroCharacterizationAndInVivoPharmacokineticStudy In Rats	DSC Thermal Analyzer (DSC N-650; SINCO; Taipei, Taiwan)	Heating rate:10°C/minute Nitrogen flow rate: 20 mL/minute Endothermic peak: 159.4°C	[43]
4	Formulation, Optimization And In Vitro Evaluation Of Nanostructured Lipid Carriers For Topical Delivery Of Apremilast	DSC 4000, Perkin Elmer, Massachusetts, United States	Heating rate: 10°C/min Nitrogen flow rate: 20 ml/min Endothermic peak:159.56 °C	[45]
5	A Novel Apremilast Nail Lacquer Formulation For The	Differential scanning calorimetry; PerkinElmer,	Heating rate:30 °C/min Nitrogen flow rate: 22mL/min	45

Table 8: DSC Method Determination for Apremilast

	Treatment Of Nail Psoriasis	California	Endothermic peak: 166.25°C	
6	Preparation, Characterization And In Vitro Evaluation Of Tablets Containing Microwave-Assisted Solid Dispersions Of Apremilast	Shimadzu DSC-60 differential scanning calorimeter (Shimadzu Corp.)	Heating rate: 10°C/min Endothermic peak: 157.56°C	[49]
7	Formulation And Development Modified Release Apremilast Pellets	Mettler Toledo 61000 USA, DSC system	Heatingrate:10°CperminNitrogenflowrate:20ml/minEndothermicpeak:152.7°CPeak:Peak:	[50]

Nuclear Magnetic Resonance(NMR):

NMR finds its application in quantitative analysis, to determine the impurity of the drug, characterization of the composition of the drug products and in quantitation of drugs in pharmaceutical formulations and biological fluids⁽¹³⁹⁾.

Few literatures were reported where Tetramethysaline(TMS) was used as internal

standard. Spectra was recorded at 500MHz/400MHZ.

One-dimensional (1H NMR, 13C NMR) and 2D (distortionless enhancement by polarization transfer (DEPT), 1H-1H correlation spectroscopy (COSY), heteronuclear multiple bond correlation (HMBC), and heteronuclear singular quantum correlation (HSQC)) NMR spectra was recorded in reported case^([23]).

Sr no	Title		Description	Ref
				no
1	Identification, characterization	Bruker AVANCE	Spectra: 500MHz	[23]
	and HPLC quantification for	500MHz NMR	Sample: dissolved in DMSO-d	
	impurities of Apremilast	system (Fallanden,	IS: tetramethylsilane	
		Switzerand)		
2	Development and Validation	Bruker AV400	Spectra: 400MHz	[33]
	of Stability Indicating Rapid		IS : tetramethylsilane (TMS)	
	RP-LC Method for			
	Determination of Process and			
	Degradation Related			
	Impurities of Apremilast, an			
	Anti-Inflammatory Drug			

Table 9: NMR Method Determination for Apremilast

X - RAY Diffraction Technique (XRD):

X-RAY diffraction is performed to obtain structural information of crystalline solid^{([47]]}.APM powder is highly crystalline in nature, as clear from sharp peaks observed in the xray spectrum.Powder X-RAY study was carried out to investigate crystalline and amorphous form of apremilast. X-RAY diffractometer used were shimadzu, Rigaku. Target filter used was copper(Cu).

Table 10: XRAY Method Determination for Apremilast

Sr no	Title		Description	Ref
				no
1.	Enhancement Of	X-Ray	λ: 1.54 Å	[44]
	Solubility And	Diffractometer	voltage/current: 40 kV & 30 mA power	
	Dissolution Rate	(Shimadzu,	scan range: 10°- 80°	
	Of Apremilast	Japan) using	scan rate: 4°/min	

	_			
	Ву	Cu-ka line as X-	characteristic intense peaks at 11.29°,	
	Recrystallization	Ray radiation	17.80°, 26.49° of pure APM	
	Technique			
2.	Preparation,	Smart Lab high	voltage/current: 40 kV/40 mA	[49]
	Characterization	power powder	scan range: 10° to 89	
	And In Vitro	X-ray	scan rate: 4°/min	
	Evaluation Of	diffractometer	characteristic diffraction peaks observed	
	Tablets	(Rigaku Corp.,	at 10.09°, 11.87°, 13.53°, 16.34°, 26.09°,	
	Containing	Tokyo, Japan)	and 26.92° of pure APM	
	Microwave-	with Cu as		
	Assisted Solid	a target filter		
	Dispersions Of	u turget inter		
	Apremilast			
2	Propagation Of	V rou	voltage/ourments 20 kV /25 m A	r421
5	Fleparation Of	A-lay diffusitometer	voltage/current. $30 \text{ kV} / 25 \text{ mA}$	[43]
	Sustained		scal range: $5 - 90$ (20)	
	Release	(Uitima-1v, Dial 1)	scan rate: 4°C/minute	
	Apremilast-	Rigaku, Tokyo,	characteristic intense peaks at 10.08° 20,	
	Loaded Plga	Japan) with Cu	12.38° 20, 13.48° 20, 20.82° 20, 22.50° 20,	
	Nanoparticles:	as	24.10° 20, 24.66° 20, and 26.96° 20 of pure	
	In Vitro	target filter	АРМ	
	Characterization			
	And In Vivo			
	Pharmacokinetic			
	Study In Rats			
4	Formulation,	x-ray	Voltage/current: 40 mV/ 35 mA	[45]
	Optimization	diffractometer	Scan range: $0-50^{\circ}(2\theta)$	
	And In Vitro	(D8 Advance,	characteristic diffraction peaks were	
	Evaluation Of	Bruker,	observed at 21.12°, 27.29°, 26.44°, 12.61°,	
	Nanostructured	Massachusetts,	13.70°, 16.50° and 24.99° in the	
	Lipid Carriers	United States)	diffractogram of pure APM	
	For Topical	,	and a pure the training	
	Delivery Of			
	Apremilast			
L	Promuse			

Scanning Electron Microscope(SEM):

Scanning Electron Microscope (SEM) is widely used to study the surface morphology and surface topography of powder. In reported article, sample powder was examined by placing them on a stub of metal with adhesive, coated with 40 - 60nm of metal such as Gold/Palladium under a reduced pressure (60% vacuum). The SEM images of the pure APM and its recrystallized product showed irregular shaped crystals with different particle sizes, which infers that recrystallization, had not affected the morphology of the compound^{([}44]⁾.

Apremilast and its impurities

I. Stability-Indicating Related Substances Method of Apremilast By HPLC And Synthesis AndChracterization Of Related Impurities Using Mass And NMR Spectroscopy⁽³¹⁾

Major process related impurities of

1.(S)-1-(3-ethoxy-4-methoxyphenyl)-2-(methyl sulfonyl)ethanamine i.e.KRM-A

2. N-(1,3-dioxo-1,3-dihydroisob- enzofuran-4-yl)acetamide i.e. KRM-B

3.(S)-4-amino-2-(1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl) ethyl) isoindoline-1,3-dione i.e., Impurity-A

4. 3-(acetylamino-2-{[1-(3- ethoxy-4methoxyphenyl)-2 (methylsulfonyl) ethyl] carbamoyl}benzoic acid i.e. Impurity-B

5. V 3-(acetylamino-6-{[1-(3-ethoxy-4methoxyphenyl)-2- (methylsulfonyl)ethyl] carbamoyl}benzoic acid i.e. Impurity-C

The retention time for Apremilast is 39.0 mins and Relative Retention time (RRT) is:

Name	RRT
N-(1,3-dioxo-1,3-dihydroisobenzofuran -4- yl)acetamide i.e., KRM-B	0.29
(S)-1-(3-ethoxy-4-methoxyphenyl) -2-(methyl sulfonyl)ethanamine i.e. KRM-A	0.42
3-(acetylamino-2-{[1-(3-ethoxy-4-methoxyphenyl)-2-	0.78
(methylsulfonyl)ethyl] carbamoyl} benzoic acid i.e., Impurity-B	
3-(acetylamino-6-{[1-(3-ethoxy-4-methoxyphenyl)-2-	0.79
(methylsulfonyl)ethyl]carbamoyl}benzoic acid i.e., Impurity-C	
(S)-4-amino-2-(1-(3-ethoxy-4-methoxyphenyl)-2- (methylsulfonyl)ethyl)	0.97
isoindoline-1,3-dione i.e., Impurity-A	

II. Identification, Characterization and HPLC Quantification For Impurities Of Apremilast⁽²²⁾

Major process related impurities are

- 3-Acetylamino-phthalic acid Imp-C
 N-[1-(3-Ethoxy-4-methoxy-phenyl)-2-methanesulfonyl-ethyl]-acetamide Imp-A
- N-(1-{1-[1-(3-Ethoxy-4-methoxy-phenyl)-2methanesulfonyl-ethylamino]-ethyl}-3-methylbutyl)-acetamide Imp-B
- 4. 2-[1-(3-Ethoxy-4-methoxy-phenyl)-2methanesulfonyl-ethyl]-4-nitro-isoindole-1,3 dione(Imp-D) Imp-D
- 5. (4-Amino-2-[1-(3-ethoxy-4-methoxy-phenyl)-2-methanesulfonyl-ethyl]-isoindole1,3-dione) Imp-E
- 6. (N-{2'-[1-(3-Ethoxy-4-methoxy-phenyl)-2methanesulfonyl-ethyl]-1,3,1',3'-tetrao xo-1,3,2',3'-tetrahydro-1'H-[2,4']biisoindolyl-4yl}-acetamide)Imp-F

Wondersil C18 column(250×4.6 mm, 5 $\mu m)$, the detection wavelength was 230nm, ACN and TFA mixtures

The retention time (RT) and relative retention time (RRT) of all six impurities were

Name	RT	RRT
3-Acetylamino-phthalic acid (Imp-C)	7.87	0.25
N-[1-(3-Ethoxy-4-methoxy-phenyl)-2-methanesulfonyl- ethyl]-acetamide Imp-A	16.94	0.54
N-(1-{1-[1-(3-Ethoxy-4-methoxy-phenyl)-2-methanesulfonyl- ethylamino]-ethyl}-3-methyl-butyl)-acetamide Imp-B	22.13	0.71
2-[1-(3-Ethoxy-4-methoxy-phenyl)-2-methanesulfonyl-ethyl]- 4-nitro-isoindole-1,3 -dione (Imp-D)	23.71	0.76
(4-Amino-2-[1-(3-ethoxy-4-methoxy-phenyl)-2- methanesulfonyl-ethyl]-isoindole1,3-dione) Imp-E	30.06	0.98
(N-{2'-[1-(3-Ethoxy-4-methoxy-phenyl)-2-methanesulfonyl- ethyl]-1,3,1',3'-tetrao xo-1,3,2',3'-tetrahydro-1'H- [2,4']biisoindolyl-4-yl}-acetamide) Imp-F:	34.12	1.10.

III. Development and Validation of Stability Indicating Rapid RP-LC Method for Determination of Process and Degradation Related Impurities of Apremilast, an Anti-Inflammatory Drug⁽³²⁾ Column: Synergi Max-RP 80 A (150 \times 4.6 mm ID), 4 μ HPLC Mobile Phase:

of Water.Mobile phase B: Acetonitrile

Mobile phase A- ammonium dihydrogen orthophosphate and 1 ml triethylamine in 1000 mL

l	1000 mL	Maximum wavelength: 230nm		
	Name	Retention		
		time		
	Imp 1	2.68		
	Imp 2	3.11		
	Imp3	10.25		
	Imp 4	12.33		
	Imp 5	12.88		
	Imp 6	14.81		
	Imp 7	15.38		
	Imp 8	16.76		

IV. A Stability Indicating HPTLC Method for Apremilast and Identification of degradation products using MS/MS^{(40).}

Eleven degradation products were dentify based on MS/MS spectra.

The eleven degrading product found was DP-1, DP-2, DP-3, DP-4, DP-5, DP-6, DP-7, DP-8, DP-9, DP-10, and DP-11 respectively.

II. CONCLUSION:

An overview of the current state of the art for analytical methods for the determination of Apremilast has been presented. The literature compilation has revealed that a variety of methods are available for Apremilast. So, from all above information it can be concluded that various spectroscopic methods, chromatographic methods and other methods were used for determination of Apremilast which has been successfully used on a routine basis and allows the quantification of the drug. There is a possibility of developing Gas chromatography methods. Also, pharmacopeia might be included as an official drug.

REFERENCE: -

- Rajguru, Jagadish P et al. "Update on psoriasis: A review." Journal of family medicine and primary care 28 Jan.2020; vol. 9,1: 20-24.
- [2]. OTEZLA (Apremilast) FDA APPROVAL HISTORY:<u>https://www.drugs.com/history/o</u> tezla.html
- [3]. Afra T P, Razmi T M, Dogra S. Apremilast in psoriasis and beyond: Big hopes on a small molecule. Indian Dermatol Online J 2019;10:1-12.
- [4]. Scherrer MAR, Rocha VB, Garcia LC. Behçet's disease: review with emphasis on dermatological aspects. An Bras Dermatol. 2017;92(4):452-464.
- [5]. Bubna AK. Apremilast: A dermatologic perspective. Indian J Drugs Dermatol. 2016;2:75-82.
- [6]. Nolan J. Maloney, Jeffrey Zhao, Kyle Tegtmeyer, Ernest Y. Lee & Kyle Cheng Off-label studies on apremilast in

dermatology: a review, Journal of Dermatological Treatment.2019.

- [7]. Zhang Ji, Zhou Chunyan, Tan Hui, Yan Bo, Zhou Wei "Cn107305198 - Method for Separating And Determining Apremilast And Related Substances Through High-Performance Liquid Chromatography"
- [8]. "Cn105628841 Method for Separating and Measuring Apremilast And Enantiomer Of Apremilast Through Liquid Chromatography".
- [9]. OTEZLA, APREMILAST European Medicine: <u>https://www.ema.europa.eu/en/documents/pr</u> <u>oduct-information/otezla-epar-product-</u> information en.pdf
- [10]. Drug Bank Apremilast<u>https://www.drugbank.ca/drugs/D</u> <u>B05676</u>
- [11]. Product MonographOtezla Product Monograph Celgene:
- [12]. <u>https://media.celgene.com/content/uploads/si</u> <u>tes/23/Otezla-Product-Monograph-</u> <u>English.pdf</u>
- [13]. Doltade, M., &Saudagar, R. The Analytical Method Development and Validation: A Review. Journal of Drug Delivery and Therapeutics/ 2019;9(3):563-570.
- [14]. G Verma* and Dr. M Mishra. Development and Optimization of UV-Vis Spectroscopy -A Review. World Journal of Pharmaceutical Research. 7(11):1170-1180
- [15]. Deepak Chandra Sharma, G. Rajan, PranshuTangri, PreetiKothiyal "Method Devlopment of Apremilast (API) in Methanol by UV-Visible Spectroscopy" Published in International Journal of Trend in Scientific Research and Development 2018;2(3):1-3,
- [16]. Intwala JK, Doshi DB. Development and Validation Of Sophisticated Analytical Method For The Estimation Of Apremilast. Pharma Science Monitor. 2017;8(2).
- [17]. Lonkar, N.A. Development and Validation of UV-Spectrophotometric Method for The Estimation Of Apremilast In Bulk Form By Absorbance Maxima Method. World journal of Pharmacy and pharmaceutical sciences.2017;758-766.
- [18]. Suraj R. Chaudhari, Amod S. Patil, Atul A. Shirkhedkar. Studies on Derivative Spectroscopy and Area Under Curve UV-Spectrophotometric Methods for Estimation

of Apremilast in Bulk and In-house Tablets. Asian J. Pharm. Res. 2018; 8(1):11-16.

- [19]. Badhe P. Aher S. Saudagar RB, Validation Development and of Spectrophotometric and Chromatographic Method for the Estimation of Apremilast in Bulk and Formulations, Journal of Drug Delivery and Therapeutics. 2019; 9(6s):136-142.
- Sulthana, Shaheem&Kamma, Harsha & Sri, [20]. Sankar, Ravi. "Development & and of stability-indicating validation UV spectrophotometric method for determination of Apremilast in bulk and pharmaceutical dosage form" Indian Journal of Research in Pharmacy and Biotechnology. 2017, 5(1): 47-53
- [21]. Kulsum, S., Sagar, D.G., Butul, A., Fatima, S., & Uddin, S.Method Development and Validation of Forced Degradation Studies of Apremilast By Using UV Spectrophotometric Method.2016.
- [22]. Yadav V, Bharkatiya M*. A Review on Hplc Method Development and Validation. Research Journal of Life Sciences, Bioinformatics, Pharmaceuticaland Chemical Sciences, 2017, 2(6),166-178.
- [23]. Zou, Qiaogen&xiong, kaihe& ma, xingling&liu, lei &cao, na& Sun, Lili & Wei, Ping. Identification, characterization and HPLC quantification for impurities of Apremilast. Anal. Methods.2016;8:10.
- [24]. Foroughbakhshfasaei, M., Szabó, Z. & Tóth, G. Validated LC Method for Determination of Enantiomeric Purity of Apremilast Using Polysaccharide-Type Stationary Phases in Polar Organic Mode. Chromatographia. 2018;81:1613–1621.
- [25]. Chaudhari, S.R., Shirkhedkar, A.A. Design of experiment avenue for development and validation of RP-HPLC-PDA method for determination of apremilast in bulk and in in-house tablet formulation. J Anal Sci Technol. 2019;10, 10.
- [26]. Rina Mohan Sonawane, Rutuja Prabhakar Sonare, Snehal Ganpat Tekawade And Dr. Ashok Pandurang Pingle. Chromatographic Method Development and Validation of Assay of Apremilast In Bulk and Tablet Dosage Form Ejbps.2018; 5(8), 412-417.
- [27]. MukthinuthalapatiMathrusri Annapurna, Debi Prasad Pradhan, MalineniSushmitha. A new Stability indicating RP-HPLC method for the determination of Apremilast-An

Antirheumatic drug. Research J. Pharm. and Tech. 2017; 10(4): 1160-1164.

- [28]. Rajan V Rele and Patil SP. Reversed Phase High Performance Liquid Chromatography Method for Determination of Assay and Forced Degradation Study of Apremilast From Active Pharmaceutical Dosage Form. Journal of Chemical and Pharmaceutical Research, 2018;10(7): 139-144
- [29]. Patel, Jitesha&Chokshi, Parin&Mashru, Rajashree. Validation of Stability Indicating Method and Degradation Kinetic Study of Apremilast. Journal of Drug Delivery and Therapeutics. 2020;10:76-85.
- [30]. Lonkar, N., Sawant, S. And Dole, M. Development and Validation of Stability Indicating RP-HPLC Method for The Estimation of Apremilast By Forced Degradation Studies. W. J Pharm Pharm Sci. 2017; 6:1493-502.
- [31]. Sulthana, Shaheem&Kamma, Harsha & Sri, & Sankar, Ravi. Development and Validation of a Stability-Indicating Reversed Phase Hplc Method for Determination of Apremilast in Bulk and Pharmaceutical Dosage Form. 2020.
- [32]. Anerao, Ajit&Telange, Vihar&Bondre, Nitin & John, Satish &Gadhave, Thaksen& Pradhan, Nitin. Stability-Indicating Related Substances Method of Apremilast By Hplc And Synthesis and Chracterization Of Related Impurities Using Mass and NMR Spectroscopy. International Journal of Current Medical and Pharmaceutical Research.2017;3:1378-1385.
- [33]. Landge, S.B., Dahale, S.B., Jadhav, S.A., Solanki, P.V., Bembalkar, S.R. and Mathad, V.T. Development and Validation of Stability Indicating Rapid RP-LC Method Determination for of Process and Degradation Related Impurities of Apremilast, an Anti-Inflammatory Drug. American Journal of Analytical Chemistry.2017;8:380-394.
- [34]. Ramachandram, Dinesh & Dinesh, Rini. Lcms-A Review and A Recent Update. World Journal of Pharmacy And Pharmaceutical Sciences.2016;5:377.
- [35]. Yan, Genquan& Yu, Lu & Chen, Xu & Tran, Triet& Nguyen, Lam & Wang, Zhijun & Wang, Ling. A rapid and sensitive High-Performance Liquid Chromatographytandem Mass Spectrometry method for determining apremilast in beagle dog plasma

and urine: Application in a pharmacokinetic study. Acta Chromatographica.2020;10.

- [36]. Rao, Tammisetty& Reddy, Challa& Babu, Puttagunta. LC-MS/MS Determination and Pharmacokinetics Study of Apremilast after Oral Administration in Rabbits. Indian Journal of Pharmaceutical Education and Research. 2020; 54: 440-447.
- [37]. Iqbal, Muzaffar &Ezzeldin, Essam&Alrashood, Sara & Imam, Faisal & Al-Rashood, Khalid. Determination of apremilast in rat plasma by UPLC–MS/MS in ESI-negative mode to avoid adduct ions formation. Bioanalysis. 2016;8:10.
- [38]. Chen, Lianguo et al. "Determination of Apremilast in Rat Plasma by UPLC-MS-MS and Its Application to a Pharmacokinetic Study." Journal of chromatographic science 2016;54 8:1336-40.
- [39]. Siddiqui, Masoom&Alothman, Zeid& Rahman, Nafisur.Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry.2013:44.
- [40]. Chaudhari, Suraj R and Atul A. Shirkhedkar. "Application of Box-Behnken Design for Validation of High-Performance Thin-Layer Chromatography/Densitometry Method for Robustness Determination of Apremilast in Bulk and in house Tablets." Pharmaceutical methods.2017: 09-15.
- [41]. BholeRitesh P., Naksakhare Sachin R, Bonde Chandrakant G.A Stability Indicating HPTLC Method for Apremilast and Identification of degradation products using MS/MS.J. Pharm. Sci. & Res. 2019;11(5):1861-1869,
- [42]. Prajapati, P., Patel, H.B. & Shah, S. DoE based failure mode effect analysis (FMEA) to development of stability indicating HPTLC method for estimation of apremilast. SN Appl. Sci. 2020;2:1371.
- [43]. Anwer MK, Mohammad M, Ezzeldin E, Fatima F, Alalaiwe A, Iqbal M. Preparation of sustained release apremilast-loaded PLGA nanoparticles: in vitro characterization and in vivo pharmacokinetic study in rats. Int J Nanomedicine. 2019;14:1587-1595.
- [44]. Palepu, Hemanth &Prathipati, Sai &Uppalapati, Karthik & Rao, TP. Enhancement of Solubility And Dissolution Rate Of Apremilast By Recrystallization Technique. International Journal of Research in Pharmacy and Chemistry.2019.

- [45]. Madan, Jyotsana&Khobaragade, Shweta &Dua, Kamal & Awasthi, Rajendra. (2020). Formulation, optimization and in vitro evaluation of nanostructured lipid carriers for topical delivery of apremilast.2020:7.
- [46]. Kushwaha AS, Repka MA, Narasimha Murthy S. A Novel Apremilast Nail Lacquer Formulation for the Treatment of Nail Psoriasis. AAPS PharmSciTech. 2017;18(8):2949-2956.
- [47]. Jendrzejewska I, Zajdel P, Pietrasik E, Barsova Z, Goryczka T. Application of Xray powder diffraction and differential scanning calorimetry for identification of counterfeit drugs. Monatsh Chem. 2018;149(5):977-985.
- [48]. Shakeel F, Haq N, Alanazi FK, Alsarra IA. Solubility and thermodynamics of apremilast in different mono solvents: Determination, correlation and molecular interactions. Int J Pharm. 2017;523(1):410-417.
- [49]. Madan JR, Pawar AR, Patil RB, Awasthi R, Dua K. Preparation, characterization and in vitro evaluation of tablets containing microwave-assisted solid dispersions of apremilast. Polim Med. 2018;48(1):17-24.
- [50]. Nandgude, Tanaji&Hasabe, Priyajit.Formulation and development modified release apremilast pellets. Asian Journal of Pharmaceutics.2018;12: S1228-S1235.